Agenda

- Overview of Challenge Home Program Requirements
- Spotlight on Interior Duct Requirement
- Resources: www.buildings.energy.gov/zero
 - Training
 - Webinars
 - Case Studies
A Symbol of Excellence

U.S. DEPARTMENT OF ENERGY

CHALLENGE HOME

ZERO ENERGY READY HOME

U.S. DEPARTMENT OF ENERGY
Zero Energy Ready Home Goal

High-performance home so energy efficient, all or most annual energy consumption can be offset by renewable energy.
The Home of the Future….Today
Challenge Home Requirements

Exhibit 1: DOE Zero Energy Ready Home Mandatory Requirements for All Labeled Homes

<table>
<thead>
<tr>
<th>Area of Improvement</th>
<th>Mandatory Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ENERGY STAR for Homes Baseline</td>
<td>Certified under ENERGY STAR Qualified Homes Version 3[^9][^10]</td>
</tr>
<tr>
<td></td>
<td>Ceiling, wall, floor, and slab insulation shall meet or exceed 2012 IECC levels[^14][^15]</td>
</tr>
<tr>
<td>3. Duct System</td>
<td>Ducts located within the home's thermal and air barrier boundary[^16]</td>
</tr>
<tr>
<td>4. Water Efficiency</td>
<td>Hot water delivery systems shall meet efficient design requirements[^17]</td>
</tr>
<tr>
<td>5. Lighting & Appliances[^18]</td>
<td>All installed refrigerators, dishwashers, and clothes washers are ENERGY STAR qualified.</td>
</tr>
<tr>
<td></td>
<td>80% of lighting fixtures are ENERGY STAR qualified or ENERGY STAR lamps (bulbs) in minimum 80% of sockets</td>
</tr>
<tr>
<td></td>
<td>All installed bathroom ventilation and ceiling fans are ENERGY STAR qualified</td>
</tr>
<tr>
<td>6. Indoor Air Quality</td>
<td>Certified under EPA Indoor airPLUS[^10]</td>
</tr>
</tbody>
</table>

* Mandatory requirements, except #3, reference standards and codes outside the program

- Many exceptions! Read the 30 footnotes (5 ½ pages) for clarifications
Key Technical Specification

Challenge Home Requirements 1-7, cont’d

• #1 ENERGY STAR version 3 or 3.1 certification and meet or beat the DOE Challenge Home Target Home specifications – Target HERS Index, generally in mid-50’s

• #2(a) ENERGY STAR labeled windows
 – NFRC rating req’d
 – ENERGY STAR window criteria: http://www.energystar.gov/index.cfm?c=windows_doors.pr_anat_window

<table>
<thead>
<tr>
<th>Windows</th>
<th>Skylights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U-Factor</td>
</tr>
<tr>
<td>Northern</td>
<td>≤ 0.30</td>
</tr>
<tr>
<td>North-Central</td>
<td>≤ 0.32</td>
</tr>
<tr>
<td>South-Central</td>
<td>≤ 0.35</td>
</tr>
<tr>
<td>Southern</td>
<td>≤ 0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glazing</th>
<th>U-Factor</th>
<th>SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque</td>
<td>≤ 0.21</td>
<td>None</td>
</tr>
<tr>
<td>≤ 1/2 lite</td>
<td>≤ 0.27</td>
<td>≤ 0.30</td>
</tr>
<tr>
<td>≥ 1/2 lite</td>
<td>≤ 0.32</td>
<td>≤ 0.30</td>
</tr>
</tbody>
</table>
Key Technical Specification

Challenge Home Requirements 1-7, con’t

- #2(b) Ceiling, wall, floor, and slab insulation shall meet or exceed **2012 IECC levels** or equivalent overall U-value
- 3 Paths – First, what’s your IECC climate zone number?

![2012 IECC Climate Zone Map](image-url)
Challenge Home Requirements 1-7, con’t

- #2(b) Path 1 focuses on the insulation itself
 - IECC 2012, Chapter 4, Table 402.1.1 provides prescriptive Insulation R-values

2012 IECC Prescribed R-values (Table 402.1.1)

<table>
<thead>
<tr>
<th>CLIMATE ZONE</th>
<th>FENESTRATION U-FACTOR<sup>b</sup></th>
<th>SKYLIGHT<sup>b</sup> U-FACTOR</th>
<th>GLAZED FENESTRATION SHGC<sup>b, e</sup></th>
<th>CEILING <i>R</i>-VALUE</th>
<th>WOOD FRAME WALL <i>R</i>-VALUE</th>
<th>MASS WALL <i>R</i>-VALUE<sup>i</sup></th>
<th>FLOOR <i>R</i>-VALUE</th>
<th>BASEMENT WALL <i>R</i>-VALUE<sup>c</sup></th>
<th>SLAB<sup>d</sup> <i>R</i>-VALUE & DEPTH</th>
<th>CRAWL SPACE<sup>c</sup> WALL <i>R</i>-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NR</td>
<td>0.75</td>
<td>0.25</td>
<td>30</td>
<td>13</td>
<td>3/4</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.40</td>
<td>0.65</td>
<td>0.25</td>
<td>38</td>
<td>13</td>
<td>4/6</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.55</td>
<td>0.25</td>
<td>38</td>
<td>20 or 13+5<sup>h</sup></td>
<td>8/13</td>
<td>19</td>
<td>5/13<sup>f</sup></td>
<td>0</td>
<td>5/13</td>
</tr>
<tr>
<td>4 except Marine</td>
<td>0.35</td>
<td>0.55</td>
<td>0.40</td>
<td>49</td>
<td>20 or 13+5<sup>h</sup></td>
<td>8/13</td>
<td>19</td>
<td>10/13</td>
<td>10, 2 ft</td>
<td>10/13</td>
</tr>
<tr>
<td>5 and Marine 4</td>
<td>0.32</td>
<td>0.55</td>
<td>NR</td>
<td>49</td>
<td>20 or 13+5<sup>h</sup></td>
<td>13/17</td>
<td>30<sup>g</sup></td>
<td>15/19</td>
<td>10, 2 ft</td>
<td>15/19</td>
</tr>
<tr>
<td>6</td>
<td>0.32</td>
<td>0.55</td>
<td>NR</td>
<td>49</td>
<td>20+5 or 13+10<sup>h</sup></td>
<td>15/20</td>
<td>30<sup>g</sup></td>
<td>15/19</td>
<td>10, 4 ft</td>
<td>15/19</td>
</tr>
<tr>
<td>7 and 8</td>
<td>0.32</td>
<td>0.55</td>
<td>NR</td>
<td>49</td>
<td>20+5 or 13+10<sup>h</sup></td>
<td>19/21</td>
<td>38<sup>g</sup></td>
<td>15/19</td>
<td>10, 4 ft</td>
<td>15/19</td>
</tr>
</tbody>
</table>
Key Technical Specification

Challenge Home Requirements 1-7, con’t

- #2(b) Path 2 – Focuses on *assemblies* (e.g. walls and floors) – Table 402.1.3 provides max U-values for combined materials in an assembly (batts + blue board)
- #2(b) Path 3 – Focuses on a WHOLE HOUSE AVERAGE
 - Area weighted average of U-values that allows trade-offs between walls, floors, ceilings, roofs, & windows

2012 IECC Equivalent U-values (Table 402.1.3)

<table>
<thead>
<tr>
<th>CLIMATE ZONE</th>
<th>FENESTRATION U-FACTOR</th>
<th>SKYLIGHT U-FACTOR</th>
<th>CEILING U-FACTOR</th>
<th>FRAME WALL U-FACTOR</th>
<th>MASS WALL U-FACTOR</th>
<th>FLOOR U-FACTOR</th>
<th>BASEMENT WALL U-FACTOR</th>
<th>CRAWL SPACE WALL U-FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>0.75</td>
<td>0.035</td>
<td>0.082</td>
<td>0.197</td>
<td>0.064</td>
<td>0.360</td>
<td>0.477</td>
</tr>
<tr>
<td>2</td>
<td>0.40</td>
<td>0.65</td>
<td>0.030</td>
<td>0.082</td>
<td>0.165</td>
<td>0.064</td>
<td>0.360</td>
<td>0.477</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.55</td>
<td>0.030</td>
<td>0.057</td>
<td>0.098</td>
<td>0.047</td>
<td>0.091<sup>c</sup></td>
<td>0.136</td>
</tr>
<tr>
<td>4 except Marine</td>
<td>0.35</td>
<td>0.55</td>
<td>0.026</td>
<td>0.057</td>
<td>0.098</td>
<td>0.047</td>
<td>0.059</td>
<td>0.065</td>
</tr>
<tr>
<td>5 and Marine 4</td>
<td>0.32</td>
<td>0.55</td>
<td>0.026</td>
<td>0.057</td>
<td>0.082</td>
<td>0.033</td>
<td>0.050</td>
<td>0.055</td>
</tr>
<tr>
<td>6</td>
<td>0.32</td>
<td>0.55</td>
<td>0.026</td>
<td>0.048</td>
<td>0.060</td>
<td>0.033</td>
<td>0.050</td>
<td>0.055</td>
</tr>
<tr>
<td>7 and 8</td>
<td>0.32</td>
<td>0.55</td>
<td>0.026</td>
<td>0.048</td>
<td>0.057</td>
<td>0.028</td>
<td>0.050</td>
<td>0.055</td>
</tr>
</tbody>
</table>
#3 - All ducts and air handlers located within the thermal and air barriers – “ducts in conditioned space” more later

#4 Hot water distribution system
- Goal: Minimize “stand-by” loses while waiting for hot water
- Design goal: ≤ 0.5 gallons stored between water heater and farthest outlet
- Test procedure: ≤ 0.6 gallons stand by loss at farthest outlet
- On-demand recirculating systems are allowed. Timer- and temperature-based recirculating systems are not.

#5 - All installed refrigerators, dishwashers, clothes washers, exhaust fans, ceiling fans and 80% of lighting (fixtures and/or bulbs) are ENERGY STAR qualified.
- Find ENERGY STAR products:
Challenge Home Requirements 1-7, con’t

- #6 - EPA Indoor airPLUS
 - Recently Revised 2013 to align with ENERGY STAR for New Homes (prerequisite)
 - Version 1 (Rev. 01) – for homes permitted after July 1, 2013
 http://epa.gov/iaplus01/pdfs/construction Specifications.pdf
 - Program components – many criteria covered by ENERGY STAR checklists
 • Moisture Control
 • Radon Control
 • Pest Barriers
 • HVAC Systems
 • Combustion Pollutant Control
 • Low Emission Materials
 • Home Commissioning
 - Main web page: http://epa.gov/iaplus01/index.html
Key Technical Specifications

Challenge Home Requirements 1-7, con’t

- #7 EPA Renewable Ready Compliant
 - Material for Solar Electric (Photovoltaic (PV)) and Solar Thermal are similar with exact entries for some criteria
 - Program components:
 - Design and preparation for future installation
 - Homeowner awareness
 - Provision for necessary electric circuits, wiring, plumbing, etc.
 - Not require in some situations – see next slides
- EPA Renewable Energy Ready Home Guides
 - PV Guide:
 https://www.energystar.gov/ia/partners/bldrs_lenders_raters/rerh/docs/Renewable_Energy_PV.pdf
 - Water Heating Guide:
 https://www.energystar.gov/ia/partners/bldrs_lenders_raters/rerh/docs/Renewable_Energy_SWH.pdf
Challenge Home Requirements 1-7, con’t

- #7 EPA Renewable Ready Requirements Only Apply if:
 - ≥5 kWh/m²/day average daily solar radiation
 - Use your zip code to check your location here: http://gisatnrel.nrel.gov/PVWatts_Viewer/index.html
#7 EPA Renewable Ready Requirements Only Apply if:

- PV or solar HW is not already installed
- Location does not have significant natural shading (e.g., trees, tall buildings) on the south-facing roof
- Home as designed has adequate free roof area within +/- 45° of true south as noted in the table below.

Challenge Home Requirements 1-7, con’t

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2000</td>
<td>110</td>
<td>40</td>
</tr>
<tr>
<td>≤ 4000</td>
<td>220</td>
<td>60</td>
</tr>
<tr>
<td>≤ 6000</td>
<td>330</td>
<td>80</td>
</tr>
<tr>
<td>>6000</td>
<td>440</td>
<td>100</td>
</tr>
</tbody>
</table>
Interior Duct Strategies

- Traditionally, ducts have been located in vented attics and crawlspaces, basements.
- **Performance Objective of Interior Ducts (Req’m #3)**
 - Reduce heat transfer to/from ducts
 - Eliminate duct leakage to outside of conditioned space and limit the attendant moisture and air flow dynamics
- **Practical Objectives for Interior Ducts – on the job site**
 - Locate ducts and air handler to the inside of a continuous thermal barrier (wall/floor/ceiling insulation) AND to the inside of a continuous whole house air barrier
- **Building America interior ducts overview:**
Interior Duct Strategies

• Unvented adjacent spaces
 – Unvented Attic - Manatee County HFH (FL)
 – Unvented Crawl Space - Huntington Area HFH (WV)
 – Conditioned Basement - HFH of Greater Cincinnati (OH)
 – Basements and floor cavities housing ducts need air barrier and insulation at band joist similar to unvented crawl spaces

• Interior duct chases
 – Modified Truss Design - SE Volusia County HFH (FL) and Putnam County HFH (OH)
 – Fur Down Soffit Duct Chase - HFH Broward County (FL) (not Challenge Home)

• Eliminate ducts
 – Mini-split Systems - Cave Run HFH (KY)
 – Hydronic heating

• Super-insulate ducts
 – Buried ducts - emerging strategy, recent study:
Sealed and Unvented Attic

- Spray foam at the roof deck forms air barrier and thermal barrier
- More expensive and greater surface area
- Debate w/in building science community about closed vs open cell
- Thickness limited by material
- Closed cell foam has higher R-value per inch than other insulations
- Install dead wood and backer to separate from porches attics
- Ensure continuous insulation has no holes and fill in over top plates
- Hire an installer with experienced field crew, proven track record
- Airtightness metric in scope of work
- Caution: foam creates an air tight space, use caution with temporary heating, no propane heaters
- HFH Challenge Home Affiliate: Manatee County HFH

Photos: Manatee County Habitat for Humanity. Photo credit: Florida Solar Energy Center, David Beal
Unvented, Sealed Crawl Spaces

- **Ins and air barrier at stem walls instead of floor cav**
- Primary air barrier: house wrap
- Secondary air barrier: Poly ground cover + **series of sealing points**
- Check air tightness during blower door test
- Rim Joist sealing similar to rim joist between up/down stairs and basements
- Comprehensive guidance at:
 - http://www.crawlspaces.org/
 - HFH Challenge Home Affiliates
 - Unvented Crawl: Huntington Area HFH (WV)
 - Conditioned Basement: HFH of Greater Cincinnati (OH)

Unvented, Sealed Crawl Space

- Sample procedure (develop QA checklists for tasks occurring at different times in the construction process)
- Before floor joists:
 - Insulate stem walls with rigid insulation, seal edges and seams
 - Grade crawl space, cover with 6-8 mil poly sealed at the edges and seams, lap up and seal to stem walls and piers
 - Seal around sump pump covers and framing for access panels
 - Provide termite inspection shield
- After floor and exterior wall framing, before house wrap:
 - Seal bottom plate to sub-floor to rim joist to mud sill to termite strip to stem wall
- Seal and insulate rim joist from inside crawlspace
- Extended house wrap to and seal to mud sill (above termite inspection strip
- Seal around rough framing of access panels; insulate and weather strip access panel opening
Modified Truss (Fur Up) Chase

- Modified Truss “Fur Up” Duct Chase
 - Truss designed for chase
 - “Ladder” frame creates bottom of chase
 - Must be separated from attic by air and thermal barriers (e.g. tape and mud + insulation
 - Supply registers mounted in ceiling
 - Difficult to do w/fully ducted return

- HFH Challenge Home Affiliates
 - SE Volusia County HFH (FL)
 - Putnam County HFH (OH)
Modified Truss (Fur Up) Chase

- All duct chases are vulnerable to invasion – looks like great place to run wiring for security, phone, hall lighting fixtures, etc

- Blown-in insulation won’t stick to sides of chases which are essentially knee walls.
- Difficult to get full insulation at top corners of chase
- Knee wall insulation difficult to secure
- **Important**: Likely can not reach IECC 2012 req’m for ceiling R-value OR U-value at the knee wall (considered a ceiling). Use path 3, whole house, area weighted average
Fur Down Soffit Duct Chase

• Critical details for traditional “fur-down chase” - soffit construction approach
 – Top and sides of soffit formed by continuous air barrier
 – “Ladder” framing installed to inside surface of chase sides
 – Carefully mark bottom of chase above finish door height

Sources:

Florida affiliates Broward County Habitat (left and center), Lakeland Habitat (right)
Pros and cons

- Ceiling height is lowered – widen hall to reduce “cave” syndrome
- Sides of chase don’t have to be insulated
- Difficult to do with fully ducted return – central return w/passive return air transfers from bedrooms
- Use chase to create architectural interest
- Complexity of creating and sealing chase at interior walls is a major challenge – easy going down the hall, but going through a wall, the cavity must also be separated from the attic at the top plate
Fur Down Soffit Duct Chase – Alternate Approach

- Eliminates complexity at interior walls by putting air barrier above the top plates
- Critical details for alternative soffit construction
 - Top of soffit is formed by continuous, taped and mudded drywall (air barrier) above the top plates
 - Layout the duct chase ON THE PLAN during design
 - Step 1: Layout duct chase on the floor w/chalk or spray paint
 - Step 2: Slide drywall over top plates to mirror duct path, tape and mud, provide blocking as needed to level and support drywall
 - Step 3: Mechanical rough in, strap ducts in place

Tommy Williams Homes, Gainesville, FL
Step 4: build “ladder” framing (on the ground) and hang to create sides and bottom of chase

Step 5: finish ceiling as usual

- Difficult to do with fully ducted return
- Central return w/properly sized passive return air transfers from bedrooms
Interior Duct Strategies Recap

1. Unvented adjacent spaces
 - Unvented Attic - Manatee County HFH (FL)
 - Unvented Crawl Space - Huntington Area HFH (WV)
 - Conditioned Basement - HFH of Greater Cincinnati (OH)
 - Basements and floor cavities housing ducts need air barrier and insulation at band joist similar to unvented crawl spaces

2. Interior duct chases
 - Modified Truss Design - SE Volusia County HFH (FL) and Putnam County HFH (OH)
 - Fur Down Soffit Duct Chase - HFH Broward County (FL) (not Challenge Home)

3. Eliminate ducts
 - Mini-split Systems - Cave Run HFH (KY)
 - Hydronic heating

4. Super-insulate ducts
 - Buried ducts - emerging strategy
Learn More and Next Steps

Website: www.buildings.energy.gov/challenge/
- Submit Partnership Agreement (see handout)
- Attend Upcoming ZNERH Trainings and Technical Training webinars (see “Events”)
- Review Specifications and Identify Areas of Need
- Partner Locator – HVAC & rater/verifier need to be partners
- Build a Challenge Home
- Write a press release!
- Work with Building America to do a Case Study
- Submit an Application for an Award!

Email: doechallengehome@newportpartnersllc.com
Janet McIlvaine and David Beal
Florida Solar Energy Center at the University of Central Florida
DOE Building America Partnership for Improved Residential Construction
Construction Website: www.ba-pirc.org
BA-PIRC Habitat page: www.ba-pirc.org/habitat
janet@fsec.ucf.edu 321-638-1434
david@fsec.ucf.edu 321-638-1433

Holly Todd
Habitat for Humanity of Ohio
Sustainable Building Specialist
HTodd@OCCH.org

Ray Allnutt, Southeast Volusia County HFH (FL) Construction Manager
386-689-2119

Bruce Winter, Manatee County HFH (FL) Construction Manager
bwinter@manateehabitat.org (941) 748-9100 ext. 106